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Abstract 
 
In this paper, an accurate and simple model of a satellite with two flexible solar panels for three-dimensional dynamic studies is pro-

posed and compared with other models. In the proposed model, each solar panel is assumed to be rigid and attached to the satellite body 
via a simple hinge, a torsional spring, and a torsional damper. Kane's method is utilized to derive the equations of motion. The model of 
flexible satellite with the assumption of Euler-Bernoulli beam for the solar panels, generally used in the literature, has been introduced for 
comparison. A comprehensive model of flexible satellite, considering solar panels as flexible and finite element panels, has been pro-
vided in ADAMS environment as a reference when comparing the two mentioned models. The Euler-Bernoulli model does not appro-
priately simulate the three-dimensional motion of satellite. Conversely, the hinged, rigid-panel model proposed in this paper provides 
suitable results in both two- and three-dimensional maneuvers. 
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1. Introduction 

Modern satellites need a huge amount of electrical energy to 
trigger different equipment. The solar panels attached to the 
satellites can be used to perform such an activity. However, 
the structure of solar panels usually limits their capability to 
absorb sunlight. To increase absorption of solar energy, solar 
panels are designed with expanded surfaces. On the other 
hand, to reduce the weight of panels, thin structures that ampl-
ify the flexibility of solar panels are used. 

The rotation and attitude compensation of a satellite cause 
some vibrations, which have a negative effect on satellite atti-
tude, in the solar panels. This is the main reason why many 
researchers focused their work on the identification and atti-
tude control of satellites with flexible panels. 

To design the attitude control system of a satellite, an ap-
propriate model for the satellite is necessary. The satellite 
model should be simple yet capable of accurately simulating 
the actual movement of the system. The behavior of a fairly 
complete model of a flexible satellite in ADAMS is similar to 
that of a real satellite since it includes all possible mode 

shapes of flexible panels. To use the controller-design facili-
ties of MATLAB, the designer should build an appropriate 
and simple satellite model from this software. The ADAMS 
model can then be used as a virtual or laboratory system for 
utilizing the designed controller and simulating its function on 
a real satellite. In addition, the ADAMS model can be used as 
a base for validating and determining the accuracy of a simpli-
fied model in MATLAB. 

Researchers [1-6] have limited their work in the planar mo-
tion of a satellite and its rotation about the normal axis of the 
motion plane. Planar motion study helps overcome most of the 
challenges in modeling three-dimensional motions, facilitates 
the use of accurate and simple models, such as the Euler-
Bernoulli beam, and exerts mode summation procedure. The 
planar model and mode summation procedure have been used 
to model flexible satellite utilizing adaptive control [1] and 
control design based on the lyapunov stability theory [2]. 

In [3], the effect of using the active control method to re-
duce vibration in the planar motion via a piezoelectric is de-
termined by using the Euler-Bernoulli model. In addition, 
vibration control on a planar model is presented in [4]. For 
simulating the vibration of solar panels, the mode summation 
procedure is used in this reference. The required dynamic 
model can be produced via examinations on a real satellite or 
laboratory setup [5-7]. 
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In [5], the attitude control of a satellite with an L-shaped 
flexible appendage was done experimentally on a laboratory 
setup. The motion was planar, and an L-shaped appendage is 
located in the plane of motion. The natural frequencies of the 
system are measured for experiment purposes, and the transfer 
function of the system is determined based on these frequen-
cies and is used in controller design. The vibration of the flex-
ible appendage is controlled by attaching infrared sensors and 
a piezoceramic actuator to the L-shaped flexible appendage of 
the above-mentioned laboratory setup [6]. Since the attitude 
change of many of the satellites and all of the spacecrafts is 
three dimensional, the assumption of planar motion and the 
use of the Euler-Bernoulli beam do not simulate the real beha-
vior of the system. 

In [7], the required modeling for the three-dimensional con-
troller design of a satellite equipped with a pair of huge flexi-
ble solar panels is done using some testing on a real satellite 
while the satellite is moving on an orbit. The transfer function 
between the input torque to the body and body angle is ob-
tained for each of the three directions of the coordinate axes of 
the satellite. The transfer function is considered in the form of 
summation of the transfer function of the rigid body and the 
transfer function of a number of vibration modes for each 
direction. To determine related parameters, the input torque 
takes the form of a quasi-random signal in tests, and the least-
squares method is used. 

Some researchers have studied the three-dimensional mo-
tion of a satellite and have simulated flexible panels in the 
form of the Euler-Bernoulli model. [8-10] 

In [8], the equations of the three-dimensional motion of a 
satellite are obtained, aiding the Lagrange method, using just 
one mode and ignoring torsion and in-plane bending of panels. 
In [9], the mode summation procedure is used to simulate 
solar panels, and 12 bending modes have been taken into ac-
count, thereby improving the simulation. However, torsion 
modes have been ignored. Some torsion modes are exist be-
tween the first and twelfth bending modes, considering twelve 
bending modes while a number of torsion modes have been 
ignored, are not essential and slow down numerical calcula-
tions. Utilizing the Euler equation, the equations of a satellite 
in three-dimensional motion as well as the Euler-Bernoulli 
beam for solar panels are derived in [10]. Considering the 
panel model in the three-dimensional motions of a satellitesa-
tellite as aan Euler-Bernoulli beam causes disregard of the 
gyroscopic effect of panels and increases the error in the re-
sults. 

For creating an analytical model of a satellite with flexible 
solar panels, the finite element method is used in [11]. By 
dividing each panel into 16 rectangular portions (8 dual rows), 
adding the kinetic and potential energy of 32 portions (2 
symmetrical solar panels) to the kinetic energy of the central 
rigid portion, and using Lagrange equations, the equations of 
the motion of the system are obtained. In this method, the 
gyroscopic effect of panels is taken into account. However, 
due to the large number of state variables, the required time 

for running the simulation is longer than that in the Euler-
Bernoulli model. 

Elastic movement in two perpendicular directions for rod 
appendage can be done using the Euler-Bernoulli beam for 
three-dimensional analysis [12]. For this purpose, each of the 
two directions perpendicular to the longitudinal axis of the rod 
is defined by an individual function. To solve numeric prob-
lems, the mode summation procedure is used. The Euler-
Bernoulli beam is assumed to offer an appropriate solution in 
three-dimensional motion due to the slimness of the rod be-
cause gyroscopic effect does not significantly affect the slim 
rods. 
 

2. Equations of the satellite with hinged, rigid panels 

The model is comprised of two symmetric, hinged, rigid 
panels, a torsional spring with k stiffness, and a torsional dam-
per with a damping rate of c placed at the hinge. It is shown in 
Fig. 1.  
 
2.1 Reference frames 

The reference frame B )b,b,b( 321 is connected to the satel-
lite body, and its origin is located at the center of mass of the 
system. The system is free to rotate with respect to the inertial 
fixed frame I )e,e,e( 321 . Each panel is hinged to the body at 
point )2,1( =iCi , which is defined by vector Cir  in reference 
frame B . Frame iP )e,e,e( rinili  is attached to the ith panel, 
and its origin is positioned on the hinge axis. Unit vector rie  
is aligned with the hinge axis. Vector lie  is aligned with the 
direction of the longitudinal axis of the panel from the hinge 
toward the center of mass of the panel. The third vector is 
perpendicular to the two previous vectors ( lirini eee ×= ). 
Column matrix rie  defines the direction of vector rie  in 
frame B : 
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Matrix ][ rinilipi eeeE =  describes the direction of the 
ith panel in body frame B . Vector Cir  and matrix piE are 
arbitrary, so the position and the direction of solar panels rela-
tive to frame B are arbitrary. The center of mass of each pan-
el is located at a distance d  from the hinge. iθ  is the rota-
tion angle of each panel about the hinge axis relative to its 
equilibrium position. Defining il0e and in0e  as the primary 
directions for 0=iθ , lie  and nie  for other angles are ob-
tained from the following equations: 
 

iiniilli θθ sincos 00 eee ++=    (2a) 

iiniilni θθ cossin 00 eee +−=    (2b) 
 

The time derivative of lie  and nie  is as follows: 
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niili ee θ= liini ee θ−=    (3) 
 

2.2 Kane's equation 

Kane's method is utilized to derive the equations of motion 
of the satellite (body and hinged panels). To describe the mo-
tion of the system thoroughly, N generalized speeds (quasi-
velocities), ku , are required. For the satellite central body and 
two hinged panels, five quasi-velocities can be chosen as fol-
lows: 
 

332211 bbbωω uuuB ++==    (4) 

2,13 ==+ iu ii θ    (5) 
 

The first three quasi-velocities are the components of the 
absolute angular velocity of the body in frame B , and two 
other quasi-velocities are the angular velocities of the panels 
relative to the central body. Kane's equation for a set of M  
rigid bodies, defined by N  quasi-velocities, is given in Eq. 
(6) [13, 14]: 
 

kk UU =* Nk ,...,2,1=    (6) 
 

In the above equation, *
kU , the kth generalized inertia force, 

is obtained from the following: 
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where jm is the mass of the jth body, and Gja  and Gjh , are 
the absolute acceleration of the mass center and time deriva-
tive of the absolute angular momentum of the jth body about 
its mass center, respectively. The superscript T  represents 
the transpose of vectors and the substitutes for the vector inner 
product. Partial velocities k

Gjv  and k
jω  are calculated by 
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The kth generalized effective force kU  is obtained from 

 

( )∑
=

+=
M

j

k
j

T
Gj

k
Gj

T
jkU

1
ωMvF Nk ,...,2,1=    (9) 

 
In the above equation, jF  is the result of all effective 

forces applied to the jth body through its mass center, and 
GjM  is the resultant of all effective moments applied to the 

jth body on its mass center. In this equation, only the effective 
forces and moments that can do work are taken into account. 

 
2.3 Kinematics of motion and quasi-velocities 

The angular velocity vector of each panel in frame B is ob-
tained from 
 

riiPi eωω θ+=    (10) 
 

The velocity and acceleration of the mass center of each 
panel in frame B are respectively given by the following: 
 

niiGPi
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//    (11) 

niiliiniiGPiGPiGPi ddd eeeωrωωrωa 222 θθθ +−++= ×××× (12) 
 
where liCiGPi derr += , and the matrix ×ω  is a matrix oper-
ator for a cross-product. In previous sections, all nonzero par-
tial velocities are obtained using the following formulas: 
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2.4 Generalized forces 

The effective forces and moments are: 
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where CM  is the control moment vector applied to the satel-
lite body. The hinged forces and hinged momentums do not 
carry out work in the system. Finally, generalized forces are 
obtained as 
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2.5 Equations of motion 

As indicated by Eq. (14), the component of acceleration of 

 
 
Fig. 1. Satellite with two symmetrical, hinged, rigid panels. 
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the mass center of the panel along the direction of nie is re-
quired, and after simplification, the following is obtained: 
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where dr Ci

T
liGPli += re , ωeT

riri =ω , Ci
T
riCrir re= , and the 

rest are also defined in the same manner. The component of 
time derivative of the angular momentum along rie  is ob-
tained by using the following formula: 
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The general inertia force, *

4U , is obtained by using the fol-
lowing formula: 
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Using Kane's equation, the equation of motion of each panel 

is found to be 
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In the above equations, pm  is the mass of each panel. In a 

similar way, the equations of motion of the satellite body are 
obtained using the following formula: 
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3. Satellite model with hinged, rigid panels in ADAMS 

In Fig. 2, the satellite model with hinged panels in ADAMS 
software is shown. This model is created to evaluate the equa-
tions found in the previous section. The model consists of a 
central rigid body as the satellite body and two rigid panels 
connected to the central body via a revolute joint. In each joint, 
a torsional spring and a torsional damper have been added 
between two adjacent parts. 

To facilitate comparison, the initial longitudinal and per-
pendicular directions of the panels are assumed in the x and y 
axes relative to the body frame respectively.  

To compare the analytical model and the model built in 
ADAMS software, the same input has been given to the two 
models: 
 

(1 cos(2 )) [1 100 5]T
e t N mm= − × ⋅M    (33) 

 
 
Fig. 2. Satellite model with hinged, rigid panels in ADAMS. 

 

 
 
Fig. 3. Body angular velocity for the satellite model with two symme-
tric hinged panel. 

 

 
Fig. 4. Panel tip displacement for hinged panels. 

 

 
Fig. 5. Satellite model with flexible panels in ADAMS. 
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A small amount has been chosen for the torque component 
around the x axis because the inertia of the satellite around this 
axis is small. To show the gyroscopic effect, the torque com-
ponent around the z axis is supposed to be small as well. Fig-
ure 3 illustrates the components of angular velocity of the 
satellite during 4 seconds. The solid lines represent the results 
of the numerical solution of equations discussed in the pre-
vious section, which are obtained from MATLAB software. 
The circles show the results of the satellite model in ADAMD 
software. The tip displacement of each solar panel is also 
shown in Fig. 4 for comparison. 

As shown, the results are consistent with one another. The 
ADAMS model is built in a graphical environment and simply 
by defining mass, inertia, geometrical dimensions, rate of 
springs, and other parameters without the need to determine 
analytical equations. In comparison, to obtain the results from 
MATLAB software, all the equations derived in the previous 
section need to be solved using one of the numerical solving 
methods of this software. The absolute consistency between 
the results of these two methods, considering their fundamen-
tal differences, confirms the accuracy of the analytical equa-
tions derived in the previous section. Based on the results 
mentioned earlier, there is no difference between the hinged, 
rigid panels in ADAMS and the analytical model of the 
hinged, rigid panels in MATLAB. Therefore, hereafter, both 
are dubbed as hinged, rigid -panel models. 

 

4. Flexible satellite model using the Euler-Bernoulli  
beam 

In this method, the position of each point of the flexible 
panel center line relative to its non-deformed position is de-
termined as a function of time and its distance from the fixed 
end of the beam. Using the mode summation procedure, the 
vibration behavior in different frequencies is simulated. For 
deriving the equations of motions of solar panels by the Euler-
Bernoulli beam model, the Lagrange equation can be used as 
follows: 
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In the above equations, VTL −=  is the Lagrangian of 

the system, and ),( txww = is the lateral displacement of the 
beam. Using the separation of variable method, a continuous 
function ),( txw can be written in the form of the product of 
functions )(tv and )(xψ : 
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Function )(xqψ  can be written in the following form: 
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where qR  is calculated from the following equation: 
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The eigenvalues qλ are calculated based on the characteris-

tic equation given below and obtained from Eq. (37) using the 
boundary conditions (clamped at the fixed end and free at the 
other end): 
 

cos cosh 1P PL Lλ λ =−    (39) 
 

Ref. [15] has thoroughly presented the equations of motion 
of a satellite by the Euler-Bernoulli beam in three-dimensional 
motion.  
 

5. Satellite model with flexible panels in ADAMS 

The flexible satellite model in ADAMS software contains 
one central rigid body and two flexible panels fixed to the 
central rigid body at one edge as shown in Fig. 5. The dynam-
ic model is built based on modes summation procedure and 
considering the entire possible modes for a panel, such as 
bending, torsion, and so on. Each panel is divided into 400 
rectangle-shaped elements. The first six modes of each panel 
are shown in Fig. 6. The flexible panel model in ADAMS, 
considering different mode shapes, represents the dynamic 
behavior of a system that is better than other models. 
 

6. Frequency response comparison of the models 

In Fig. 7, the transfer function of the satellite with flexible 
panels as the ratio of the magnitude of the body angular veloc-
ity about the z  axis to the magnitude of the input torque 
about this axis is shown in dB unit with a broken line. The 
system input is a torque around the z  axis, which has been 
applied to the center of mass of the rigid body of the satellite. 
As can be seen, at the frequency of 2.56Hz , the ratio of alti-
tude of the body angular velocity to the altitude of the input 
torque becomes minimum. By increasing the frequency, the 
altitude of angular velocity increases. At 6.11 ,Hz  the altitude 
reaches a maximum. 

Assuming that the density of the solar panels does not 
change, along their length, the center of mass of each panel is 
placed at its geometrical center. 

While the panel is considered as a hinged, rigid panel, the 
optimum position of the hinge is not the edge of the panel 
because changing the stiffness of the torsional spring cannot 
match both the first and second frequencies with the relative 
frequencies of the equivalent satellite with flexible solar pa-
nels. As a result, the position of the hinge relative to the panel 
edge is considered as the second parameter for matching natu-
ral frequencies. 

In Fig. 8, the effect of the hinge position and stiffness of the 
torsional spring on the two natural frequencies of satellite with 
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rigid panels is shown. Constant frequency curves are shown 
with solid lines for the first frequency and with broken lines 
for the second frequency. The increase in stiffness of torsional 
springs causes an increase in both natural frequencies of the 
system, while an increase in the distance of the hinge from the 
panel tip causes an increase in the first frequency and a de-
crease in the second frequency. The appropriate position and 
stiffness for obtaining 2.56Hz  and 6.11Hz  frequencies are 
specified from the intersection of the curves related to these 
values. The value obtained for the position of the hinge is 
107 ,mm  and for torsion stiffness, it is 215 / degN mm⋅ . 

In Fig. 7, the frequency transfer function for the satellite 
with hinged, rigid panels for the hinge position of 107mm  
and torsion stiffness of 215 / degN mm⋅ is shown with a con-
tinuous line. As shown in this figure, there is a good corres-
pondence between the two models for frequencies less than 
8Hz . Beyond this frequency, however, the results of the 
hinged, rigid -panel model and the flexible-panel model de-
viate from each other. 

In Fig. 9, the frequency transfer function as the proportion 
of the altitude of panel tip displacement to the altitude of the 
input torque around the z  axis in “dB” is shown in a broken 
line for the satellite with flexible panels and in a solid line for 
the satellite with hinged, rigid panels. As can be seen, at the 
frequency of 6Hz , the altitude of panel displacement is at a 
maximum, and there is a good correspondence between the 
two models up to 10Hz . 

The first four natural mode shapes of the satellite with flex-
ible panels are illustrated in Fig. 10. In each mode shape, for a 

 
Fig. 6. The first six natural modes of each solar panel. 
 

 
 
Fig. 7. Transfer function of angular velocity of the satellite body. 
 
 

 
 
Fig. 8. Effect of hinge position and spring stiffness on the first (solid
lines) and second (broken lines) frequencies. 

 
 
Fig. 9. Transfer function of the displacement of solar panels’ tip. 

 

 
 
Fig. 10. First natural modes of the satellite with flexible panels. 

 

 
 
Fig. 11. Natural mode shapes of the satellite with two symmetric
hinged, rigid panel. 
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better observation of nodal points, the image of the satellite 
and its panels are in two ends of the vibration amplitude (with 
180 phase apart). At the first natural frequency ( 2.56Hz ), the 
mode shape of the panel is bending, and one node is generated 
in each panel. In this state, the satellite body has linear motion 
along the y axis and moves in the opposite direction of two-
panel motion. At a frequency of 6.11Hz , the mode shape is 
bending, one node is generated in the panel, and the satellite 
body has an angular motion on the z axis. 

In Fig. 11, the natural mode shapes of the satellite with 
hinged, rigid panels are illustrated. As shown, at the first fre-
quency ( 2.56Hz ), the satellite motion is exactly the same as 
the first mode of the satellite with flexible panels. The satellite 
motion at the second natural frequency ( 6.11Hz ) is also ex-
actly similar to the second mode of the satellite with flexible 
panels, and the position of nodes is almost similar as well. 
Regarding the curvature in the mode shapes of flexible panels, 
a slight difference in the position of nodes is expected. 

The satellite with rigid panels does not include the higher natu-
ral frequencies of the satellite with a flexible panel. The third 
frequency of flexible panels (16.83Hz ) is also associated to the 
bending mode, which is not observed in the frequency response 
of the hinged, rigid -panel model. The fourth mode ( 22.33Hz ) is 
associated with the torsion of panels around the x axis. 

Dividing each panel into several parts and considering the 
simple joint, torsional spring, and torsional damper between 
two adjacent parts, a more comprehensive model of the rigid 
panel is created to improve hinged, rigid -panel model beha-
vior in higher frequencies. However, ignoring the torsion of 
panels and dividing solar panels into several hinged parts are 
useful if the highest frequency obtained for bending does not 
skip, roughly speaking, two or more of the torsional mode 
frequencies.  
 

7. Comparison of models’ behavior in the time domain 

In this section, the same input torques are applied to the 
three models, namely, the hinged, rigid -panel model, the Eu-
ler-Bernoulli beam model, and the flexible-panel model 
(ADAMS), to compare the behavior of these different models 
in the time domain. The input is chosen so that they highlight 
the major differences between these models. As the first input, 
the torque is applied to the body just around the z axis: 

 
mmNt T

C ⋅×××−= ]1000[))210cos(1( πM    (40) 
 
This input has the most influence in the bending of the pa-

nels. The second input resembles the first one, but the fre-
quency grows up to 30Hz: 

 
mmNt T

C ⋅×××−= ]1000[))230cos(1( πM    (41) 
 
As the third input, the three-dimensional torque applied to 

the body, unlike the two mentioned input, does not have any 
component on the z axis: 

 
(1 cos(2 )) [5 200 0]T

C t N mm= − × ⋅M    (42) 

The components of body angular velocity and the dis-
placement of the panel tip due to the application of the first 
input to the three satellite models are illustrated in Figs. 12 and 
13, respectively. The response of the Euler-Bernoulli beam 
model is obtained using the first three mode shapes. The other 
two components of the body angular velocity are zero. 

While the input frequency increases from 10Hz  to 30Hz , 
the results of the Euler-Bernoulli beam model (broken line) 
continue to match the results of the full model in the ADAMS 
software (circles). However, there is a considerable difference 
between the results of the body angular velocity of the hinged-
panels model (solid lines) and the full model in ADAMS (Figs. 
14 and 15). Regarding Figs. 7 and 9, this difference is predict-
able at a frequency of 30Hz . Considering Figs. 7 and 9, with 
frequencies over 10Hz , the difference between the results of 
the flexible-panels model and the hinged-panel model are 
expected to increase. If only the first mode of the Euler-
Bernoulli model (dash-dot curves) is used, a big variation in 
the results of angular velocity will be generated, and a beha-
vior similar to that seen in the hinged panel will be attained. 

In Fig. 16, the portion of displacement of the panel tip due 
to each of the first three modes of the Euler-Bernoulli model is 
shown. The first modes have more effect on the displacement 
of the panel tip. However, by adding each mode to the sum-
mation of previous modes, the result will be more accurate.  

Finally, the third input torque is applied to the satellite. Due 
to the gyroscopic effect and with the generating components 
of angular velocity around the x and y axes, the panels will 
rotate around the z axis. In Fig. 17, the components of angular 
velocity are shown. Fig. 18 illustrates the displacement of the 
panel tip resulting from the application of the three-
dimensional torque to the satellite. 

As shown, the results from the satellite with flexible panels 

 
 
Fig. 12. z component of the angular velocity of the body to the first
input.  

 

 
 
Fig. 13. Displacement of the panel tip to the first input. 
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in ADAMS (circles) and in the hinged-panel models (solid 
lines) are consistent with each other. However, the results of 
the Euler-Bernoulli beam model do not match those of the two 
above-mentioned models. 

 
8. Conclusion 

A simple and accurate model for a flexible satellite is pro-
posed and compared with the Euler-Bernoulli model of a flex-
ible satellite generally used in the literature. A comprehensive 
model of the flexible satellite considering solar panels as flex-
ible, finite element panels is provided in an ADAMS envi-
ronment as reference when comparing the two models. Nu-
merical simulations show identical results for the three models 
in planar (two-dimensional) motion. 

The Euler-Bernoulli model is clarified to be inappropriate 
for studying the three-dimensional motion of the flexible satel-
lite, especially the study of panel vibration, due to missing 

information on the gyroscopic effect in this model. On the 
other hand, the proposed hinged, rigid -panel model provides 
an accurate model of the flexible satellite both in two- and 
three-dimensional typical maneuvers, which produce low-
frequency vibrations in the solar panels. Finally, a multi-
hinged panel model is suggested as an accurate model for 
studying two- and three-dimensional maneuvers at higher 
frequencies, as well as lower frequencies if the appropriate 
position for the hinges and the correct stiffness for torsional 
springs between adjacent panel pieces are chosen. 
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Nomenclature------------------------------------------------------------------------ 

a  :  Acceleration vector 
b , b  :  Unit vectors of the body frame 
c  :  Damping rate of each torsional damper 
d  :  Distance from the mass center of the panel to the hinge 
e , e  :  Unit vectors of other frames in the body frame 
E  :  Transfer matrix of the panel frame to the satellite body 
F  :  Resultant of applied forces to the body 
h  :  Absolute angular momentum vector 
h  :  Time derivative of the absolute angular momentum 
I , I  :  Inertia moment vector 

 
 
Fig. 17. Components of body angular velocity to the third input. 
 

 
 
Fig. 18. Displacement of the panels’ tip to the third input. 

 
 
Fig. 14. z component of the angular velocity of the body to the second
input. 
 

 
 
Fig. 15. Displacement of the panel tip to the second input. 
 

 
Fig. 16. Portion of each mode in the displacement of the panels’ tip for
the second input. 
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k  :  Stiffness rate of each torsional spring 
L  :  Lagrangian 

PL  :  Length of each solar panel  
M  : Resultant moments on the body center of mass 
m  :  Mass 
N  :  Number of generalized speeds (quasi-velocities) 
r , r  :  Position vector 
T  :  Kinetic energy of the entire system 
t  :  Time 

k
Gv  :  Partial linear velocity of the kth center of mass 
kU  :  kth generalized effective force 
*
kU  :  kth generalized inertia force 

ku  :  kth quasi-velocity 
V  :  Potential energy of the entire system 
w  :  Lateral displacement of the Euler-Bernoulli beam 
x  :  Distance of a point on the beam to its support 
I ,B ,P  :  Inertia frame, body frame, panel frame 

qλ  :  Eigenvalue of the qth mode shape 
v  :  Modal displacement 
ψ  :  Mode shape function 
θ  :  Rotation angle of the panel on the hinge axis 
ω ,ω  :  Angular velocity 

kω  :  kth partial angular velocity 
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